Proton transfer in methylmalonyl-CoA epimerase from Propionibacterium shermanii. Studies with specifically tritiated (2R)-methylmalonyl-CoA as substrate.

نویسندگان

  • P F Leadlay
  • J Q Fuller
چکیده

(2R)-Methyl[2-3H]malonyl-CoA was used as the substrate for methylmalonyl-CoA epimerase from Propionibacterium shermanii, under conditions where the (2S)-methylmalonyl-CoA product was removed enzymically as fast as it was formed, and the fate of the label was monitored at different extents of reaction. Very little, if any, tritium is found attached to the C-2 position in the (2S)-epimer product (isolated as propionyl-CoA). Evidently, the hydrogen atom of the new C-H bond in the product is essentially solvent-derived. The rate of tritium release into the solvent is lower than the rate of product formation, and shows a primary kinetic tritium-isotope effect on kcat./Km of 2.3 +/- 0.1. The specific radioactivity of the remaining substrate rises slowly during the epimerase-catalysed reaction, and this provides an independent estimate of the primary kinetic tritium-isotope effect on kcat./Km of 1.6 +/- 0.5. These results, taken together, indicate that the mechanistic pathway of the epimerase-catalysed reaction resembles that established for proline racemase [Cardinale & Abeles, (1968) Biochemistry 7, 3970-3978], in which two enzyme bases are involved in catalysis. One base removes the proton from the substrate, the second provides the new proton, and there is no fast isotopic exchange between enzyme-bound intermediates and solvent protons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subunit interactions in Propionibacterium shermanii methylmalonyl-CoA mutase studied by analytical ultracentrifugation.

The effect of increasing ionic strength on adenosylcobalamin-dependent methylmalonyl-CoA mutase from Propionibacterium shermanii was studied by using analytical ultracentrifugation. Both sedimentation-velocity and low-speed sedimentation-equilibration measurements show that the enzyme dissociates progressively into its two dissimilar subunits with increasing ionic strength. Equilibrium between ...

متن کامل

Adenosylcobalamin-dependent methylmalonyl-CoA mutase from Propionibacterium shermanii. Active holoenzyme produced from Escherichia coli.

The linked structural genes coding for both subunits of adenosylcobalamin-dependent methylmalonyl-CoA mutase from the Gram-positive bacterium Propionibacterium shermanii have been altered by site-directed mutagenesis and placed under the control of an inducible phage-T7-specific plasmid promoter in Escherichia coli. Conditions have been found under which both alpha- and beta-subunits are produc...

متن کامل

Propionate acts as earboxylic group aeeeptor in aspartate fermentation by Propionibacterium freudenreichii

Cells of Propionibacterium freudenreichii ssp. shermanii and ssp. freudenreichii did not show significant growth or product formation in a mineral medium with 10 mM aspartate or 10 mM fumarate, vitamins, and a small amount (0.05% w/v) of yeast extract. In the presence of added propionate, growth with aspartate or fumarate was possible, and depended strictly on the amount of propionate provided,...

متن کامل

Propionic Acid Metabolism: Mechanism of the Methylmalonyl Isomerase Reaction and the Reduction of Acrylyl Coenzyme a to Propionyl Coenzyme a in Propionibacteria.

The pathways of propionate formation in the propionibacteria and of propionate oxidation in animal tissues have been well documented. In the bacteria the final step is the transfer of a carboxyl group from methylmalonyl CoAl to pyruvate with the formation of oxalacetate and propionyl CoA." I The reaction was found to involve biotin;2 the purified enzyme, methylmalonyl-oxalacetic transcarboxylas...

متن کامل

Transcarboxylase 5S structures: assembly and catalytic mechanism of a multienzyme complex subunit.

Transcarboxylase is a 1.2 million Dalton (Da) multienzyme complex from Propionibacterium shermanii that couples two carboxylation reactions, transferring CO(2)(-) from methylmalonyl-CoA to pyruvate to yield propionyl-CoA and oxaloacetate. Crystal structures of the 5S metalloenzyme subunit, which catalyzes the second carboxylation reaction, have been solved in free form and bound to its substrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 213 3  شماره 

صفحات  -

تاریخ انتشار 1983